If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x=185
We move all terms to the left:
x^2+3x-(185)=0
a = 1; b = 3; c = -185;
Δ = b2-4ac
Δ = 32-4·1·(-185)
Δ = 749
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{749}}{2*1}=\frac{-3-\sqrt{749}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{749}}{2*1}=\frac{-3+\sqrt{749}}{2} $
| x+7/4=7 | | 5/6x=70 | | -3/2z=-3/4 | | 3.4=x/5 | | 7x+6+9x-36=x | | 100=10+2x | | 3/14x-17=37 | | 7.7x-17.8=43.8 | | b-4/4=5.75 | | 6x+4=5(3x+6) | | 4x-10/3x+1=1 | | ×+y=8 | | 0.88-0.01(x+1)=-0.02(4-x) | | x^2(4-x)^3(12-7x)=0 | | -4w+19=-5w-20 | | 4y-3×=20 | | -3(2p+1)=-3(8+p | | -19x-12=107 | | 6p+1=1.9 | | 0.30x+0.40(30)=0.15(146) | | 20=x0.4 | | 1/3x-18=3/4x-17 | | -4y-2=6y+13 | | (-12x=10 | | -7(x-7)-8=41 | | 3.5a=23.8 | | -10(x+1.7)=-3 | | -x=-12+5x | | 5.6y+1.8=y+67.6 | | 2/3m+24=40 | | 5x3+3x4=2x | | v=2(3.14)(9)(7) |